

EN

Operating Instructions Pressure Sensor including Temperature measurement PTS 500

www.cs-instruments.com

I. Foreword

Read these operating instructions carefully and completely before installation, commissioning and maintenance work. Follow the instructions to ensure safe operation and proper functioning.

The operating instructions must always be available at the place of use. It is not permitted to make only individual pages available.

Imprint

© CS Instruments GmbH & Co.KG | 24955 Harrislee | Gewerbehof 14 | GERMANY. Translation of the original German instructions. PTS 500 | DE | V1.00.

II. Table of contents

IForeword
II Table of contents
1Scope of delivery5
2Device overview5
3Type plates6
4Intended use7
5Use contrary to the intended purpose7
6Safety provisions7
6.1 Warning and information symbols used in these instructions7
6.2 Warnings
6.3 General safety instructions8
6.4 Spare parts/accessories11
6.5 Environmental protection11
7 Product information 12
7.1 PTS 500 sensor types for the following pressure ranges
7.2 Product features 12
7.3 Function
8Technical data13
8.1 Technical data and ambient conditions13
8.2 Dimensions of PTS 500 14
9Installation of pressure sensor PTS 50014
9.1 Installation in pipe: PTS 500 15
9.2 Rotate the operating unit by 180° 17
10. Electrical connection
10.1 Service interface (Modbus-RTU, analogue output 420 mA
10.2 Ethernet / Ethernet PoE (Power over Ethernet)
11.Commissioning21
11.1 Switch on sensor21

12. Operation	22
13.Settings menu	22
13.1 Call up the settings menu	
14. Sensor setup	24
14.1 Units	24
14.2 Pressure offset setting	25
14.3 Offset temperature setting	26
15. Settings advanced	27
15.1 Service interface (Modbus-RTU)	27
15.2 Switch/alarm output	28
15.3 User	29
15.3.1 Settings menu password, 4-digit	
15.3.2 Language	
15.3.3 Display brightness / Display rotate	30
15.4 Analogue output setting 420 mA	31
15.4.1 Channel 1	31
15.4.2 Status	31
15.4.3 Unit	31
15.4.4 Scaling 4 mA and 20 mA	32
15.4.5 Fault current	32
16.Network (Ethernet) settings	33
16.1 IP address	33
16.2 Modbus-TCP setup	33
17. Info	34
18. Status and error messages	35
18.1 Status messages	35
18.2 Error messages	35
19.Maintenance	36
19.1 Maintenance	36
19.2 Calibration	36
19.3 Spare parts and repair	36
20. Disassembly	36
21. APPENDIX	37
21.1 Modbus-RTU settings (20012005)	37
21.2 Values Register PTS 500	37
21.3 Index Units	38
Declaration of conformity	39

1 Scope of delivery

- Pressure sensor PTS 500 for pressure and temperature measurement
- M12 connector socket, 5-pin, A-coded
- Calibration certificate
- These operating instructions

2 Device overview

- 1 Control/operating unit
- 1.1 Cover with display (rotatable 180°)
- 2 Connector A (Power Supply,Modbus-RTU,4...20 mA)
- 3 Connector B (Pulse, MBus, Ethernet)
- 4 Sensor unit
- 5 Selection button (UP)
- 6 ENTER/OK button

3 Type plates

- 1 Manufacturer info
- 2 Sensor name
- 3 Order numbers, serial number, production date
- 4 Conformity/certification marking
- 5 Electrical connection data:

e.g. available inputs and outputs, supply voltage

6 - Warning notice "Operating instructions must be observed".

4 Intended use

Pressure sensor PTS 500 is a measuring probe used to measure the pressure and temperature of gaseous fluids (compressed air, nitrogen) in the compressed air line.

The maximum permissible operating pressure for the PTS 500 is 1 bar/14.5 psig...50 bar/725 psig, depending on the type variant.

The temperature measuring range is -20 °C to + 200 °C/-4...392 °F with a maximum medium temperature at the pressure sensor of 125 °C/257 °F.

Operation of the PTS 500 is only permitted in the following cases:

• Only use the sensor indoors.

The sensor must be protected from direct sunlight, rain, splash water and excessive dust.

- In pipes with non-corrosive, gaseous fluids (compressed air, nitrogen) with clean, dry and oil-free properties.
- According to the technical data and approved ambient conditions.
- With correct calibration \rightarrow chapter 22.2.

5 Use contrary to the intended purpose

Misuse when used as a climbing aid! The pressure sensor can be damaged. Danger of slipping. Select the installation location so that the pressure sensor cannot be used as a climbing aid. Never use the pressure sensor as a step or climbing aid.

6 Safety provisions

6.1 Warning and information symbols used in these instructions

In these operating instructions, this symbol is found next to all work safety instructions where there is danger to life and limb. Observance of these instructions and cautious behaviour are particularly important in these cases. All work safety instructions must also be shared with other users. In addition to the instructions in these operating instructions, the general safety and accident prevention regulations must be observed.

Achtung This symbol is located at points in the operating instructions where special attention must be paid to ensure that the guidelines, regulations, instructions and the correct procedure for the work are observed and that damage and destruction are prevented.

 \square This symbol indicates important information or measures for the protection of the environment.

Ĭ

This symbol indicates particularly important information for operators.

6.2 Warnings

Warnings are subdivided according to the hazard levels **DANGER**, **WARNING** and **CAUTION**. Meaning of the warnings:

DANGER Immediate danger!

WARNING

Failure to observe this information may result in serious injury or death.

<u>/!</u> \

Potentially dangerous situation!

Failure to observe this information may result in serious injury or death.

CAUTION Potentially dangerous situation!

Failure to observe this information may result in moderate to minor injuries.

NOTE Potentially dangerous situation!

Failure to observe this information may result in property damage.

6.3 General safety instructions

Important notes for installation and maintenance personnel

The pressure sensor may only be installed by trained specialists with knowledge and experience in compressed air and electrical engineering.

Electrical connection, commissioning and maintenance are only to be carried out by qualified electricians in accordance with the electrotechnical regulations (DIN EN 50110-1, DIN EN 60204-1 and so on). Prerequisite for the specialist personnel: Technical training and knowledge of technical standards, EU directives and EU regulations.

The applicable national accident prevention regulations and ordinances and general occupational health and safety measures must be observed, including the wearing of suitable and prescribed personal protective equipment (PPE).

Only the manufacturer is permitted to perform repairs and adjustments. Installation and maintenance by trained specialist personnel.

Obligations of the installer and system operator

The pressure sensor must be checked and maintained regularly by a trained and qualified individual \rightarrow chapter 22.

Cleaning and maintenance intervals are to be determined by the system operator in accordance with DIN-ISO certification – frequency depending on ambient conditions and anticipated considerations.

Calibration: As part of the DIN ISO certification, have the pressure sensor calibrated at regular intervals, but at the latest after **two years** (or annually if required by factory regulations). Remove pressure sensor for calibration and send to CS Instruments GmbH & Co.KG \rightarrow chapter 22. Keep an identical replacement sensor ready for use in systems that are essential for operation.

NOTE

Without the consultation and approval of CS Instruments GmbH & Co.KG, the warranty claim is void in case of conversion work which is not listed in these operating instructions. This symbol is located at points in the operating instructions where special attention must be paid to ensure that the guidelines, regulations, instructions and the correct procedure for the work are observed and that damage and destruction are prevented.

Obligations of the installer of the system: The installer of the system is responsible for the safety of the system in which the PTS 500 is installed. Pay particular attention to the technical data and ambient conditions (chapter 8) and the information on the electrical connection and prescribed connection cables (chapter 10).

Only use pressure sensor PTS 500 as intended.

Risk of injury and accidents when operating outside the permissible ambient/operating conditions or operating temperatures due to overpressure or faulty installation. Comply with maximum permissible operating pressure. Ensure that the pressure sensor is only operated within the permissible limit values (\rightarrow type plate).

Risk of injury due to unauthorised unit modifications, incorrect installation or damaged components. The operating licence expires in these cases. Operation is only permitted with original components. Only operate the pressure sensor when it is completely assembled. Do not operate a damaged sensor, and prevent further use of the sensor until it is repaired. The sensor must be checked and maintained regularly by trained and qualified individuals. Device modifications are not permitted and release the manufacturer from any warranty and liability.

Dirt particles in the compressed air will cause measurement errors. Dirt particles and liquids can contaminate the sensor element and lead to malfunction or failure. The system operator must ensure the prescribed purity of the fluids

approved for the application as well as appropriate cleaning and maintenance intervals. The manufacturer provides no warranty and accepts no liability of any kind with regard to misuse.

Explosion hazard in potentially Ex-protective zones due to ignition of explosives when sparks are generated. The pressure sensor does not have Ex approval! Do not use the pressure sensor in Ex-protective zones.

Ensure clean compressed air without harmful components. Harmful components include explosive or chemically unstable gases and vapours, acid or base-forming substances such as ammonia, chlorine or hydrogen sulphide and condensates or oils and oil vapours.

Password protection in the settings menu: Password protection is provided to protect against unauthorised entries/settings of the system parameters. For setting the password \rightarrow chapter 17.1.

Danger of burns from hot sensor. Hot air/gas/gas mixtures in the pipe can warm up or heat the pressure sensor. Only touch the sensor when it has cooled down. If applicable, use protective gloves.

Danger to life from escaping compressed air if it is directed at people, especially at high pressure. For assembly, maintenance and calibration work, depressurise the system and check the depressurised state. For the KM PA/B, install a shut-off valve in the compressed air line before and after the pressure sensor so that the pressure sensor can be removed quickly and easily for maintenance/calibration purposes. Ensure proper installation.

Danger if the applicable regulations for electrical installations are not observed. For electrical installation, observe the applicable regulations, e.g. DIN EN 50110-1. In Germany observe in particular VDE 0100 in the relevant parts. Observe local regulations. Before working on the electrical installation, switch off all supply circuits, switch off the mains fuse and secure against being switched on again. Ensure voltage-free status. Operate the pressure sensor only with permissible connection cables for the mains supply and bus connection \rightarrow technical data. Establish the electrical connection according to the wiring diagram (\rightarrow chapter 10).

Exercise due care when handling packaging materials. Comply with applicable safety and accident prevention regulations. Keep packaging material out of reach of children (choking hazard if foil or small parts are swallowed).

Seals/sealants: As a suitable sealant for the screw connections, sealing rings made of copper or aluminium, elastomer sealing rings with metal backing, sealing tape/sealing cord or other equivalent sealants that meet the demands of the required, necessary compressed air quality can be used.

6.4 Spare parts/accessories

Spare parts

• Cover with Display

NOTE

Only trained specialist personnel may replace the cover and display of the operating unit. To ensure measurement accuracy and operational safety, all other repairs may only be performed by the manufacturer. Please contact your CS Instruments GmbH & Co.KG. They will be happy to help you.

NOTE

Keep an identical replacement sensor ready for use in systems that are essential for operation.

6.5 Environmental protection

The pressure sensor as well as the packaging contain recyclable materials that should not be disposed of in the residual waste. At the end of use, dispose of the packaging materials and pressure sensor in an environmentally friendly manner in accordance with the regulations in your country.

The operating materials and auxiliary materials consumed and any parts that are replaced during operation of the pressure sensor must be disposed of in accordance with environmental protection regulations.

Germany: Disposal code according to the Waste Catalogue Ordinance (AVV) **16 02 14**, electrical and electronic devices and their components.

7 **Product information**

7.1 PTS 500 sensor types for the following pressure ranges

- Up to max 0 bar (gauge) /0 psig
- Up to max 1.6 bar gauge/23.2 psig
- Up to max 10 bar gauge/145 psig
- Up to max 16 bar gauge/232 psig
- Up to max 50 bar gauge/725 psig

7.2 Product features

- Units can be selected as required: °C, °F, hPa, mbar, bar, psi
- Two-button input on the display
- 1x analogue output 4...20 mA, adjustable for pressure and temperature parameters

Optional: 2x analogue output 4..20mA

- Modbus of RTU interface (RS-485)
- Optional: Ethernet/Ethernet PoE and M-Bus
- Switching/alarm output, galvanically isolated. Alarm adjustable via keypad.
- IP 65 housing

7.3 Function

Pressure sensor PTS 500 continuously measures the pressure and temperature of the gaseous fluid (compressed air, nitrogen) in the pipe.

8 Technical data

8.1 Technical data and ambient conditions

Parameters	Pressure, temperature	
Sensor principle	Pressure measurement	
Available measuring ranges for overpressure (bursting pressure), depending on sensor type	01 bar/014.5 psi (abs) 01.6 bar gauge (6 bar)/023.2 psig (87 psi) 010 bar gauge (40 bar)/0145 psig (580 psi) 016 bar gauge (60 bar) /0232 psig (870 psi) 050 bar gauge (100 bar)/0725 psig (1450 psi)	
Pressure sensor accuracy	±0.5% f.s. (at 20 °C/68 °F) *	
Measuring range of temperature sensor	-20+125 °C/-4257 °F	
Medium temperature	-20+125 °C/-4257 °F	
Accuracy of temperature	±1.0 °C/1,8 °F (-10+50 °C/14122 °F)	
Ambient temperature	-2060 °C/-4140 °F	
Storage temperature	-4080 °C/-40176 °F	
Pollution level	Pollution level 2	
Relative humidity (transport, storage, operation)	0% to 90% (non-condensing)	
Operating height, storage height	02000m (06560 ft)	
Mounting thread	G ½" or NPT ½"	
Power supply	18 to 36 VDC via SELV supply, 5 W or Power over Ethernet according to IEEE 802.3af, class 2 (3.846.49 W).	
	Fuse protection in supply unit T2.5L 125V	
Signal output	Modbus-RTU (RS-485) 1x AO 420 mA (pressure or temperature) Optional: Modbus-TCP Ethernet M-Bus 2 x analogue output 420mA	
Power consumption	Max. 6.5 W	
Measured values with Modbus-TCP	Pressure (hPa, mbar, bar, psi,) Temperature (°C, °F)	
Electrical connection	2x M12 flush-type connector, 5-pin (A-coded) Option Ethernet: 1 x M12 socket, 8-pin (X-coded)	
Protection class	IP 65	

* of f.s. = of full scale

8.2 Dimensions of PTS 500

9 Installation of pressure sensor PTS 500

NOTES

If necessary, rotate the display head of the operating unit 180° (\rightarrow chapter 9.2) or rotate the display (for reading direction, rotate the LCD upside down \rightarrow chapter 17.3).

Clean/flush the pipes sufficiently after the installation work.

Condensate and particles in the pipe can contaminate the sensor element and lead to faulty measurement results.

WARNING

Components under high pressure! Risk of injury if the pressure sensor is not installed in a pressure-tight manner.

After installation, be sure to check and ensure the pressure tightness of the connection. Do not work directly over the sensor but next to it to minimise possible hazards.

9.1 Installation in pipe: PTS 500 Direct installation

WARNING Danger from pressurised components.

Before any work on the pipe system, depressurise the system.

Î

NOTE

► If possible, install a shut-off valve on both sides of the pressure sensor. The pressure sensor can then be easily removed for installation, maintenance or calibration.

- 1. Attach the pipe connection with a suitable screw-in thread (G ½" or NPT ½", depending on the variant) at the installation site. Observe the safety instructions.
- 2. For G ¹/₂" threads, insert the flat gasket supplied. Ensure that it is undamaged and correctly attached.

CAUTION

Do <u>not</u> use flat gaskets for NPT ½" threads = leaky connection.

Apply sealing material to the NPT ½" thread of the pressure sensor. Use only suitable PTFE sealing tape or sealant. Do not damage the thread.

- 3. Screw in the pressure sensor and tighten with a torque of 25...30 Nm.
- 4. Check and ensure the tightness of the connection.

Installation over ball valve

WARNING

Danger from pressurised components.

After installation, be sure to check and ensure the pressure tightness of the connection. Do not work directly over the sensor, but next to it to minimise possible hazards.

NOTE

With installation over a ball valve, a measured value deviation of the temperature can occur due to the increased distance.

- 1. Attach the ball valve with a suitable screw-in thread (G ½" or NPT ½", depending on the variant) at the installation site. Observe the safety instructions.
- 2. Close the ball valve.
- 3. For G ¹/₂" threads, insert the flat gasket supplied. Ensure that it is undamaged and correctly attached.

CAUTION

Do <u>not</u> use flat gaskets for NPT ½" threads = leaky connection.
▲ Apply sealing material to the NPT ½" thread of the pressure sensor. Use only suitable PTFE sealing tape or sealant. Do not damage the thread.

- 4. Screw in the pressure sensor and tighten with a torque of 25...30 Nm.
- 5. Check and ensure the tightness of the connection.

9.2 Rotate the operating unit by 180°

If desired, rotate the operating unit by 180°.

- 1. Loosen the six fastening screws [S] (Torx 10).
- 2. Pull up the operating unit and rotate it by 180°.

NOTE

Malfunctions/damage to the unit may result if it is incorrectly installed. Check the position of the head gasket. Ensure that the connection cables can be correctly plugged into flush-type connectors [2] and [3].

3. Tighten the operating unit with the six fastening screws [S], tightening torque 5 Nm.

10 Electrical connection

Work on the electrical system may only be carried out by qualified electricians or other competent persons. For electrical installation, observe the applicable regulations, e.g. DIN EN 50110-1. In Germany observe in particular VDE 0100 in the relevant parts or other national regulations accordingly.

10.1 Service interface (Modbus-RTU, analogue output 4...20 mA

- Connector A: Modbus-RTU, voltage/power supply, 4...20 mA output: M12 flush-type connector, 5-pin, A-coded
- 3 Connector B: Pulse output, M-Bus interface M12 flush-type connector, 5-pin, A-coded

Pre-assembled connection cables available as accessories.

	Ĵ	
L	5	

NOTE

Do **not** connect unneeded connections (NC) to potential and/or earth. Cut off unneeded cables and insulate them properly.

	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
Connector A	+VB	RS 485 (A) RS 485 (+)	-VB	RS 485 (B) RS 485 (-)	l+ (420 mA)
Connector B Pulse output (standard)	NC	GND	DIR	Impuls galv. isoliert	Impuls galv. isoliert
Connector B M-Bus	NC	GND	DIR	MBus	MBus
Wire colour 0553.0106 (5 m) 0553.0107 (10 m)	Brown	White	Blue	Black	Grey

-VB	Negative supply voltage 0 V
+VB	Positive supply voltage 1836 VDC smoothed
l +	Current signal 420 mA - selected measuring signal
Switching output	relay output (normally closed), max. 48 V, 0.05 A
RS-485 (A)	Modbus-RTU A/Modbus-RTU (+)

RS-485 (B) Modbus-RTU B/Modbus-RTU (-)

M12 connector plug

If no connection cable/pulse line has been ordered, the sensor is supplied with M12 flush-type connector, 5-pin, A-coded. The user can connect the signals as shown in the connection diagram.

Connector plug A [2]: M12 flush-type connector, A-coded

For Modbus-RTU setup → chapter 15 and tables in the appendix.

Connector plug B [3]: M12 flush-type connector, A-coded

10.2 Ethernet / Ethernet PoE (Power over Ethernet)

Connector Ethernet / Ethernet PoE:
 M12 Ethernet flush-type connector, X-coded

NOTE

Connector for Ethernet (PoE): M12 X-coded 8-pole (socket)
 Connection cable M12 D-coded (plug) to RJ45, data cables: 1,2 and 3,4 and PoE cables 5,6 & 7,8

Connector B [3] M12 x-coded 8 pole

Connection cable M12 x-coded to RJ45

Remark:

PTS 500 Power Classification acc. IEEE 802.3af: Class 2 (3,84W - 6,49W)

*PoE: Power over Ethernet

11 Commissioning

WARNING

Danger from pressurised components.

Ensure sufficient and safe compressed air quality with a compressed air system. If operating pressures are too low over an extended period of time, the flow velocity in the pipe increases sharply. This can lead to major impairments in the compressed air preparation. Install a compressed air system to prevent this.

When commissioning for the first time, ensure that the operating pressure is adapted to the consumer network.

11.1 Switch on sensor

- 1. Ensure that pressure sensor PTS 500 is correctly connected.
- 2. After connecting the power supply (initial start or after a reset), the pressure sensor switches on and carries out a device initialisation for approx. 2...3 seconds.

Start screen: Info page 1

Line pressure (in bar/psi) with current temperature (in °C)

Press the button to switch between the info pages.

Info page 2

R&D	
Pressure bar	min max
	200.00
500.00	700.00
Temperature °C	
00.00	15.80
23.20	31.70
HW: 1.02 SW:1.00 MBID: 1	2/2

Min/max values for overpressure.and temperature

12 Operation

- You select a menu item, button field or input value with the 🙆 button.
- To reach the selected menu/button field or to confirm the input value, press
 - the 🖾 button, depending on which menu/button field you are in.
- Pressing **Back** takes you to the menu above.

13 Settings menu

13.1 Call up the settings menu

NOTE

Password ex works = 0000. If the password has been changed and forgotten, access is granted with a master password. In such a case, please contact CS Instruments GmbH & Co.KG.

ĵ	

NOTE To assign a new password, select. Settings→ User → Password.

1. Press the 🖾 button.

The password input field appears.

- 2. Enter the 4-digit password.
- 3. Confirm with 🖾.

The Settings menu appears

Settings		
Sensor	4 - 20mA	
Modbus RTU	Network	
Alarm		
User	Info	
Advanced	Back	

14 Sensor setup

Sensor		
Units		
Offset Pressure	,	
Offset Temperature		
	Back	

1. Select the **Sensor** menu in the Settings menu with \square and confirm with \square .

Selection fields: Units, pressure and calibration

2. Press **Back** \rightarrow main menu.

14.1 Units

Ur	iits
Temperature	°C
Pressure	bar
	Back

Here you can set the units for **temperature** (°C, °F) and **pressure** (hPa, mbar, bar, psi, Mpa).

1. Select selection field with \bigcirc . Confirm with \boxdot .

The currently set unit appears in the display field.

- 2. Select another unit with \bigtriangleup . Confirm with \Huge{leq} 2x.
- 3. Press **Back** \rightarrow main menu.

14.2 Pressure offset setting

Offset Pr	essure
Actual Value:	500.00 bar
Offset:	0.00 bar
set value to	reset
	Back

NOTE

Offset: The offset value is used to compensate for minor deviations between the signal value and measuring range value that may occur after prolonged operation. **Recommendation:** Perform recalibration from time to time to ensure high accuracy.

NOTE

The offset value can be determined with a reference check or with a second pressure sensor.

- 1. To change the offset pressure, select the corresponding input field with and confirm with and
- 2. Select **Set value to** with \bigcirc . Confirm with \bigcirc 2x.
- 3. To enter a numeric field, select with \bigtriangleup and confirm with \backsim .
- 4. Increase the number value with \bigtriangleup . Confirm the entry with \boxdot .
- 5. **CLR** resets the display to 0.
- 6. Press **OK** \rightarrow accept the new value.
- 7. Press **Back** \rightarrow save and return to the main menu.

14.3 Offset temperature setting

Offset Ten	nperature
Actual Value:	23.20 °C
Offset:	0.00 °C
set value to	reset
	Back

NOTE

The offset temperature can be determined with a second thermometer.

- 1. To set the **Temperature Offset**, select the **Set value to** input field with and confirm with .
- 2. To enter a numeric field, select with \bigtriangleup and confirm with \boxdot .
- 3. Increase the number value with \bigtriangleup . Confirm the entry with \boxdot .
- 4. Use **Calibration** to accept the reference value entered, such as a comparison value for a newly calibrated pressure sensor or service sensor.
- 5. Reset to the factory settings with Reset.
- 6. Press **Back** \rightarrow save and return to the main menu.

15 Settings advanced

15.1 Service interface (Modbus-RTU)

The pressure sensor is equipped with an RS-485 interface (Modbus-RTU)..

Only connect the sensor to the Modbus after completing the following adjustment tasks:

 If the pressure sensor is installed at the end of the Modbus line, terminate it (if not → point 2.). To do this, set the internal **switch to ON**. Alternatively, a 120R resistor can be installed in the plug between pin 2 and pin 4 → chapter 10, Electrical connection. To open the operating unit, → chapter 9.2.

 Check Modbus parameter values and adjust if necessary Settings → Modbus RTU

Inter	face parameters	Factory setting			
• N	/lodbus ID/sensor ID	1			
• E	Baud rate	19200			
• 5	Stop bit	1			
• F	Parity	even			
• E	Byte format	ABCD			

Set ID, baud rate, stop bit, parity and byte format

- 3. Use \bigtriangleup to select the desired selection field and confirm with \backsim .
- 4. Use \bigtriangleup to select the desired numeric field and confirm with \boxdot .
- 5. Set the value with \bigtriangleup and accept with \boxdot .
- 6. Press **Save** to save the setting.
- 7. Press **Back** \rightarrow main menu.

NOTE

Byte format allows you to set the data format (word order). To change available formats = ABCD (Big Endian) and CDAB (Middle Endian). **Reset** to factory setting with **set default values**. If the parameters between the master and slave are different, there is **no communication** between the units.

8. Only now connect the pressure sensor to the Modbus.

15.2 Switch/alarm output

After calling up the menu, the first field is activated (blue background).

- 1. Use (to set the Alarm menu as an Alarm output and confirm with ().
- Make further settings for the alarm: Selection fields: Unit, value, hyst., fall below/exceed
- 3. Press **OK** \rightarrow main menu.

Selection fields

- Units: °C, °F, hPa, mbar, bar, psi
- Value defines the alarm value
- Hyst. defines the desired hysteresis
- Exceed/fall below determines when the alarm responds: exceed = exceeding value/fall below = falling below value

Setting

- 1. Use \square to select the desired selection field and confirm with \square .
- 2. Button (to move to the next data field or position or to change the setting value and confirm each with ().
- 3. Press **Save** to accept the setting.

15.3 User

1. Select the **User** menu in the Settings menu with \bigtriangleup and confirm with ঘ.

Selection fields: Password, Language, Display brightness and Display rotate

2. Use \bigtriangleup to select the desired selection field and confirm with \boxdot .

15.3.1 Settings menu password, 4-digit

NOTE

ĵ	
	_

Password ex works = 0000. If you have forgotten the password, you can gain access with a master password. Contact CS Instruments GmbH & Co.KG if necessary.

- 1. Use \bigtriangleup to select the **Password** selection field and confirm with \boxdot .
- Enter a new password. To do this, press one of the numeric buttons and confirm with . Set the other three digits in the same way.

Press the button to delete the last digit.

3. Enter the **password a second time** and confirm with 🖾.

The new password is now valid.

4. Press **Back** \rightarrow main menu.

15.3.2 Language

Here you can select one of the four stored languages: German, English, Spanish, French – default setting = German.

- 1. Use \bigtriangleup to select the desired **language** and confirm with \backsim .
- 2. Press **Back** \rightarrow main menu.

15.3.3 Display brightness / Display rotate

The brightness on the display can be adjusted in % steps with \bigcirc and \bigcirc \rightarrow bar chart. To reduce energy consumption, dimming makes the screen dim after the time that has been set elapses.

- 1. Use 😑 and 🔁 to adjust the screen brightness.
- 2. Use \bigtriangleup to select the desired **time** (in min.) and confirm with \boxdot .
- 3. If the control is mounted rotated by 180°, rotate the display 180° with **Rotate LCD**.
- If the sensor is to be operated exclusively using the bus system, both the and epidemion operating buttons can be locked here.

The two operating buttons (and) are unlocked within 10 seconds after the pressure sensor has been restarted and the **Settings menu** has been called up with

5. Press **Back** \rightarrow main menu.

15.4 Analogue output setting 4...20 mA

1. Select the **4...20 mA** field in the Settings menu with \bigtriangleup and confirm with ঘ.

Selection fields: Channel 1 and fault current

- 2. Use \bigtriangleup to select the desired selection field and confirm with \boxdot .
- 3. Press **Back** \rightarrow main menu.

15.4.1 Channel 1

Parameter selection fields: Status, unit, scaling 4 mA and scaling 20 mA

- 1. Use \square to select the desired parameter and confirm with \square .
- 2. Make further settings.
- 3. Press **Back** \rightarrow main menu.

15.4.2 Status

- Use to select the desired field and confirm with on activates the alarm output, off deactivates the alarm output.
- 2. Use \bigtriangleup to select the desired unit and confirm with \boxdot .
- 3. Press **Save** to accept the setting. Press **Cancel** to discard the change.
- 4. Press **Back** \rightarrow settings menu 4 20 mA.

15.4.3 Unit

- 1. Use \square to select the unit field and confirm with \square .
- 2. Use \bigtriangleup to select the desired unit and confirm with \boxdot .
- 3. Press **Save** to accept the setting. Press **Cancel** to discard the change.
- 4. Press **Back** \rightarrow settings menu 4 20 mA.

15.4.4 Scaling 4 mA and 20 mA

- 1. Use \bigtriangleup to select the desired scaling field (4 or 20 mA) and confirm with \boxdot .
- Enter the desired value in the numeric fields. Select or set with C: confirm with : CLR deletes the meter reading.
- 3. Press **Back/Save** to accept the setting. Press **Cancel** to discard the change.
- 4. Press **Back** \rightarrow 4 20 mA settings menu.

15.4.5 Fault current

Various fault currents can be defined here in the event of faults at the analogue output. These fault signals can be transmitted to a control centre via the bus system and evaluated there.

•	No fault current = None	Output to Namur NE43:
		3.8 mA – 20.5 mA
•	Fault current 2 mA	Sensor error/system error
•	Fault current 22 mA	Sensor error/system error
•	Fault current 3.8 mA – < 4 mA	Underrange

- Fault current >20 mA 20.5 mA Overrange
- 1. Use \bigtriangleup to select the **Error Current** field and confirm with \boxdot .

2. Use \bigtriangleup to set the desired **Mode** and confirm with \boxdot .

- 3. Press **Save** to accept the setting. Press **Cancel** to discard the change.
- 4. Press **Back** \rightarrow 4 20 mA settings menu.

16 Network (Ethernet) settings

1. Select the **Netwwork** menu in the Settings menu with

Selection fields: IP address, Modbus-TCP

- 2. Use \bigtriangleup to select the desired selection field and confirm with \boxdot .
- 3. Press **Back** \rightarrow main menu.

16.1 IP address

Network address to a computer, with or without DHCP.

NOTE

With the DHCP protocol activated, automatic integration of the sensor into an existing network is possible without configuring it manually.

Set static IP, subnet and gateway

- 1. Use to select the desired selection field (data field is highlighted in blue) and confirm with .
- 2. Use \bigtriangleup to change the input value and confirm with \boxdot .
- Press Button > to move to the next data field or next position or to change the setting value, and confirm each with
- 4. Press **Save** to accept the setting.

16.2 Modbus-TCP setup

The pressure sensor is equipped with a Modbus-TCP interface:

- HW interface M12 X-coded
- TCP port = 502, setting on the sensor
- Modbus unit address (unit identifier) 1...255
- Supported Modbus commands/functions: Function code 3: Read holding register Function code 16: Write multiple registers
- •

Set ID, port and byte format

- 1. Use \square to select the desired selection field and confirm with \square .
- Press Button > to move to the next data field or next position or to change the setting value, and confirm each with
- 3. Press Save to accept the setting.

ĵ		
	_	

NOTE

Byte Format allows you to set the data format (word order). Formats available for selection: ABCD (Big Endian) and CDAB (Middle Endian). Reset to factory setting with **set default values**.

17 Info

Access the info menu

	nfo
Serial No.:	00000123
Cal. Date:	10.01.2013
Sensor Type:	PTS
Software Version:	1.30
Hardware Version:	1.01
Run Time:	0d 0h 00m 00s
VIn:	24.0 V
	Back

Press **Back** → main menu

18 Status and error messages

18.1 Status messages

CAL

The status message **CAL** appears in the status line (red) after the recommended recalibration interval has expired.

NOTE Calibration: A (re)calibration is to be carried out depending on operational specifications and any intended DIN ISO certifications. Regular calibration is usually recommended after 2 years or at intervals determined by the operator.

Remove sensor for calibration and send to CS Instruments GmbH & Co.KG \rightarrow chapter 22.

18.2 Error messages

Low voltage

appears if there is a supply voltage of < 11 V. The pressure sensor will no longer measure properly. No measured values are available. Troubleshooting: Check supply voltage. Ensure supply voltage \geq 11 V.

Internal Error

Appears if an internal read error is registered (EEProm, AD converter, and so on). Troubleshooting: Remove the pressure sensor and send it to CS Instruments GmbH & Co.KG.

Temp out of range

Appears if the temperature of the medium is outside the specified temperature range. This leads to faulty measured values outside the sensor specifications. Troubleshooting: Check medium temperature. If this is OK, remove the dew point sensor and send it to CS Instruments GmbH & Co.KG.

Low Voltage 4...20 mA

Appears if the minimum supply voltage of 17.5 V is not reached. Troubleshooting: Check supply voltage. Ensure supply voltage \geq 18 V.

19 Maintenance

NOTE

The pressure sensor may only be removed by trained specialist personnel. Observe the safety instructions.

WARNING

Risk of injury from pressurised components in case of overpressure/bursting.

Remove the pressure sensor without quick coupling only in a depressurised state. Check and ensure a depressurised state.

- Ensure the depressurised state in the area of the pressure sensor. Close the ball valves on both sides of the pressure sensor or depressurise the system. Exception: When using a quick coupling.
- 2. Remove the pressure sensor.
- 3. For reinstallation \rightarrow chapter 9.

19.1 Maintenance

The pressure sensor requires little maintenance.

NOTE

Dirt particles in the compressed air cause measurement errors. A dirty sensor element can lead to a malfunction or failure. The pressure sensor may only be repaired by the manufacturer.

19.2 Calibration

Calibration: A (re)calibration is to be carried out depending on operational specifications and any intended DIN ISO certifications. Regular calibration is usually recommended after 2 years or at intervals determined by the operator.

19.3 Spare parts and repair

NOTE Keep an identical replacement sensor ready for use in systems that are essential for operation.

Permitted installation or replacement by trained specialist personnel:

Cover and display of the operating unit.

To ensure measurement accuracy and operational safety, all other repairs may only be performed by the manufacturer.

Please contact CS Instruments GmbH & Co.KG. They will be happy to help.

20 Disassembly

- Observe the safety instructions.
- Disassembly is only permitted by trained specialist personnel.

For removal of the pressure sensor \rightarrow chapter 22.

21 APPENDIX

Modbus register	Register address	No.of bytes	Data type	Description	Default setting	Read write	Unit/comment
2001	2000	2	UInt16	Modbus ID	1	R/W	Modbus ID 1 247
2002	2001	2	UInt16	Baud rate	4	R/W	0 = 1200 $1 = 2400$ $2 = 4800$ $3 = 9600$ $4 = 19200$ $5 = 38400$ $6 = 115200$
2003	2002	2	UInt16	Parity	1	R/W	0 = none 1 = even 2 = odd
2004	2003	2	UInt16	Number of stop bits		R/W	0 = 1 stop bit 1 = 2 stop bit
2005	2004	2	UInt16	Word order	0xABCD	R/W	0xABCD = Big Endian 0xCDAB = Middle Endian

21.1 Modbus-RTU settings (2001...2005)

21.2 Values Register PTS 500

Modbus Register	Register Address	No. of Byte	Data Type	Description	Read / Write	Comment
1001	1000	4	Float	Temperature	R	[°C]
1003	1002	4	Float	Temperature	R	[°F]
1005	1004	4	Float	Pressure	R	[hPa, mBar]
1007	1006	4	Float	Pressure	R	[bar]
1009	1008	4	Float	Pressure	R	[psi]

21.3 Index Units

Index	Unit	Index	Unit	Index	Unit	Index	Unit	Index	Unit
1	°C	21	Nltr/min	41	V	61	kVAr	65	W
2	°F	22	Nltr/s	42	μV	62	-	81	g/s
3	%RH	23	SCFM	43	kV	63	€	82	g/min
4	°Ctd	24	m³	44	mA	64	cts/m ³	83	m
5	°Ftd	25	ltr	45	А	65	W	84	ft
6	mg/kg	26	cf	46	kg/s	66	Wh	85	min.
7	mg/m³	27	Nm ³	47	kg	67	h	86	ms
8	g/kg	28	Nltr	48	AVm³/h	68	dB		
9	g/m³	29	SCF	49	AVI/h	69	mm		
10	m/s	30	ppm	50	AVkg/h	70	inch		
11	fpm	31	°CtdR	51	AVcf/h	71	ltr/h		
12	Nm/s	32	°FtdR	52	kg/h	72	Nltr/h		
13	SFPM	33	Pa	53	kg/min	73	lb/h		
14	m³/h	34	hPa	54	Ohm	74	lb/min		
15	m³/min	35	kPa	55	Hz	75	lb/s		
16	ltr/min	36	MPa	56	%	76	t/h		
17	ltr/min	37	mbar	57	kW	77	t		
18	ltr/s	38	bar	58	kWh	78	lb		
19	cfm	39	psi	59	PCS	79	SCFH		
20	Nm³/h	40	mV	60	kVA	80	cfh		

Declaration of conformity

KONFORMITÄTSERKLÄRUNG

DECLARATION OF CONFORMITY

We

Wir CS Instruments GmbH & Co.KG Gewerbehof 14, 24955 Harrislee

Erklären in alleiniger Verantwortung, dass das Produkt Declare under our sole responsibility that the product

> Drucksensor inkl. Temperaturmessung PTS 500 Pressure Sensor including temperature measurement PTS 500

den Anforderungen folgender Richtlinien entsprechen:

We hereby declare that above mentioned components comply with requirements of the following EU directives:

Elektromagnetische Verträglichkeit	2014/30/EU
Electromagntic compatibility	2014/30/EC
RoHS (Restriction of certain Hazardous Substances)	2011/65/EC & 2015/863/EC

Angewandte harmonisierte Normen:

Harmonised standards applied:

EMV-Anforderungen	EN 55011:2016 + A1:2017
EMC requirements	EN 61326-1: 2013

Das Produkt ist mit dem abgebildeten Zeichen gekennzeichnet. The product is labelled with the indicated mark.

hri

Wolfgang Blessing Geschäftsführer

Villingen-Schwenningen, den 16.01.2023